هوش مصنوعی چیست؟ هر آنچه باید درباره تکنولوژی ChatGPT و Dall-E بدانیم

این‌روزها همه‌جا صحبت از هوش مصنوعی یا AI است. مشکلات «حل‌نشدنی» در حال حل شدن هستند؛ افرادی که هیچ دانشی از کدنویسی یا آهنگسازی یا طراحی ندارند، به کمک AI و در عرض چند ثانیه وب‌سایت و آهنگ می‌سازنند و طرح‌های هنری شگفت‌انگیز خلق می‌کنند. شرکت‌های بزرگ نیز درحال سرمایه‌گذاری‌های چند میلیارد دلاری در پروژه‌های هوش مصنوعی هستند و مایکروسافت هم با آوردن چت‌بات ChatGPT به بینگ، در تلاش است مدل جستجوی ما در اینترنت را زیرورو کند و شاید حتی تا چند وقت دیگر، ساختار کل اینترنت را به هم بریزد.

سر در آوردن از هوش مصنوعی هم مثل هر تکنولوژی جدید دیگر که با کلی هیاهو و جنجال رسانه‌ای همراه است،‌ ممکن است گیج‌کننده باشد و حتی متخصصان هوش مصنوعی هم به‌سختی می‌توانند خود را با تحولات لحظه‌ای این فناوری همراه کنند.

در زمینه‌ی هوش مصنوعی، یک سری سوالات به مراتب پرسیده می‌شود؛ مثلا اینکه دقیقا منظور از هوش مصنوعی چیست؟ فرق بین هوش مصنوعی، یادگیری ماشین و یادگیری عمیق چیست؟ چه مسائل دشواری حالا به‌راحتی قابل حل هستند و حل چه مسائلی هنوز از توانایی هوش مصنوعی خارج است؟ و شاید محبوب‌ترین آن‌ها؛ آیا قرار است دنیا با هوش مصنوعی نابود شود؟

اگر برای شما نیز سوال شده که این همه هیاهو و هیجان بر سر هوش مصنوعی به‌خاطر چیست و اگر دوست دارید پاسخ این پرسش‌ها را به زبانی ساده یاد بگیرید، با ما همراه شوید تا نگاهی به پشت پرده‌ی این فناوری مرموز و قدرتمند بیندازیم.

هوش مصنوعی چیست؟

اصطلاح «هوش مصنوعی» (Artificial Intelligence) یا AI برای توصیف سیستمی به‌کار می‌رود که می‌تواند فعالیت‌های شناختی وابسته به ذهن انسان ازجمله «یادگیری» و «حل مسئله» را به‌خوبی یا حتی بهتر از انسان‌ها انجام دهد. اما در اکثر موارد، آنچه به‌عنوان هوش مصنوعی می‌شناسیم، درواقع «اتوماسیون» (Automation) یا همان فرایند خودکارسازی نام دارد و برای درک بهتر AI، ابتدا باید فرق آن را با اتوماسیون بدانیم.

در دنیای علوم کامپیوتر یک جوک قدیمی وجود دارد که می‌گوید اتوماسیون، کارهایی است که ما همین‌حالا می‌توانیم با کامپیوتر انجام دهیم، اما هوش مصنوعی کارهایی است که ما دلمان می‌خواست می‌توانستیم با کامپیوتر انجام دهیم. به‌عبارت دیگر،‌ به‌محض اینکه بفهمیم چطور کاری را با کامپیوتر انجام دهیم، از حوزه‌ی هوش مصنوعی خارج و وارد اتوماسیون می‌شویم.

دلیل وجود این جوک این است که هوش مصنوعی تعریف دقیقی ندارد و حتی اصطلاح فنی نیست. اگر به ویکی‌پدیا نگاهی بیندازید، می‌خوانید که هوش مصنوعی «هوشی است که توسط ماشین‌ها ظهور پیدا می‌کند، در مقابل هوش طبیعی که توسط جانوران شامل انسان‌ها نمایش می‌یابد.» یعنی تعریفی به همین مبهمی و گستردگی.

به‌طور کلی، دو نوع هوش مصنوعی وجود دارد: هوش مصنوعی قوی (strong AI) و هوش مصنوعی ضعیف (weak AI).

هوش مصنوعی قوی همانی است که اکثر افراد با شنیدن AI متصور می‌شوند؛ یعنی نوعی هوش دانای کل شبیه شخصیت هال ۹۰۰۰، همان ربات قاتلِ فیلم ادیسه‌ی فضایی یا سیستم خودآگاه هوش مصنوعی اسکای‌نت در فیلم‌های تریمیناتور که در عین داشتن هوش فراانسانی و قابلیت استدلال و تفکر منطقی، توانایی‌هایی فراتر از انسان‌ها نیز دارند.

درمقابل، هوش مصنوعی ضعیف الگوریتم‌های بسیار تخصصی‌ای هستند که برای پاسخ به سوالات مشخص، مفید و محدود به حیطه‌ی همان مسئله طراحی شده‌اند؛ مثل موتور جستجوی گوگل و بینگ، الگوریتم پیشنهاد فیلم نتفلیکس یا حتی دستیار صوتی Siri و گوگل‌اسیستنت. این مدل AIها در سطح خود بسیار قابل‌توجه هستند، هرچند کارایی آن‌ها محدود است.

اما فیلم‌های علمی‌تخیلی هالیوودی را که کنار بگذاریم، هنوز با دستیابی به هوش مصنوعی قوی فاصله‌ی زیادی داریم. درحال‌حاضر، تمام AI‌هایی که می‌شناسیم از نوع ضعیف هستند و برخی از پژوهشگران معتقدند روش‌هایی که تا‌به‌حال برای توسعه‌ی هوش مصنوعی ضعیف به کار رفته‌اند، کاربردی در توسعه‌ی هوش مصنوعی قوی نخواهند داشت. البته اگر نظر کارمندان شرکت OpenAI، توسعه‌دهنده‌ی چت‌بات محبوب ChatGPT را بپرسید، به شما خواهند گفت تا ۱۳ سال آینده و با همین روش‌های شناخته‌شده می‌توانند به هوش مصنوعی قوی دست پیدا کنند!

اگر بخواهیم در این موضوع خیلی دقیق شویم، باید بگوییم که «هوش مصنوعی» درحال‌حاضر بیشتر اصطلاحی برای جلب‌توجه و بازاریابی است تا اصطلاحی فنی. دلیل اینکه شرکت‌ها به جای استفاده از واژه‌ی «اتوماسیون» از هوش مصنوعی استفاده می‌کنند این است که می‌خواهند در ذهن ما همان تصاویر علمی‌تخیلی فیلم‌های هالیوودی را تداعی کنند. اما این کار کاملا هم زرنگ‌بازی و فریبکاری نیست؛ اگر بخواهیم دست‌ودل‌بازی به خرج دهیم، می‌توان گفت این شرکت‌ها قصد دارند بگویند درست است که تا رسیدن به هوش مصنوعی قوی راه درازی در پیش داریم، اما AI ضعیف کنونی را هم نباید دست‌کم گرفت، چون به‌مراتب از چند سال پیش، قوی‌تر شده است که خب، این حرف کاملاً درست است.

در برخی زمینه‌ها، تغییرات شگرفی در توانایی ماشین‌ها صورت گرفته و آن هم به‌خاطر پیشرفت‌هایی است که در چند سال اخیر، در دو زمینه‌ی مرتبط با هوش مصنوعی، یعنی یادگیری ماشین (Machine Learning) و یادگیری عمیق (Deep Learning) به‌دست‌ آمده است. این دو اصطلاح را هم احتمالا بسیار شنیده‌اید و در ادامه درباره‌‌ی سازوکارشان توضیح خواهیم داد. اما پیش از آن، اجازه دهید کمی درباره‌ی تاریخچه‌ی جالب و خواندنی هوش مصنوعی با شما صحبت کنیم.

کپی لینک

تاریخچه هوش مصنوعی

آیا ماشین‌ها می‌توانند فکر کنند؟

در نیمه‌ی اول قرن بیستم، داستان‌های علمی‌تخیلی، مردم را با مفهوم ربات‌های هوشمند آشنا کردند که اولین آن‌ها، شخصیت مرد حلبی در رمان «جادوگر شهر اُز» (۱۹۰۰) بود. تا اینکه در دهه‌ی ۱۹۵۰، نسلی از دانشمندان، ریاضیدانان و فیلسوفانی را داشتیم که ذهنشان با مفهوم هوش مصنوعی درگیر شد. یکی از این افراد، ریاضیدان و دانشمند کامپیوتر انگلیسی به‌نام آلن تورینگ (Alan Turing) بود که سعی داشت امکان دستیابی به هوش مصنوعی را با علم ریاضی بررسی کند.

تورینگ می‌گفت انسان‌ها از اطلاعات موجود و همچنین قدرت استدلال برای تصمیم‌گیری و حل مشکلات استفاده می‌کنند، پس چرا ماشین‌ها نمی‌توانند همین کار را انجام دهند؟ این دغدغه‌ی ذهنی درنهایت به نوشتن مقاله‌ی بسیار معروفی در سال ۱۹۵۰ انجامید که با پرسش جنجالی «آیا ماشین‌ها می‌توانند فکر کنند؟» شروع می‌شد. تورینگ در این مقاله به شرح چگونگی ساخت ماشین‌های هوشمند و آزمایش سطح هوشمندی آن‌ها پرداخت و با پرسش «آیا ماشین‌ها می‌توانند از بازی تقلید سربلند بیرون آیند؟»، آغازگر آزمون بسیار معروف «تست تورینگ» شد.

 

نبود حافظه و هزینه‌های سرسام‌آور کامپیوترها، تورینگ را از تست نظریه‌اش بازداشت

اما مقاله‌‌ی تورینگ تا چند سال در حد نظریه باقی ماند، چراکه آن زمان کامپیوترها از پیش‌نیاز کلیدی برای هوشمندی، بی‌بهره بودند؛ اینکه نمی‌توانستند دستورات را ذخیره کنند و فقط می‌توانستند آن‌ها را اجرا کنند. به‌عبارت دیگر، می‌شد به کامپیوترها گفت چه کنند، اما نمی‌شد از آن‌ها خواست کاری را که انجام داده‌اند، به‌خاطر بیاورند.

مشکل بزرگ دوم، هزینه‌های سرسام‌آور کار با کامپیوتر بود. اوایل دهه‌ی ۱۹۵۰، هزینه‌ی اجار‌ه‌ی کامپیوتر تا ۲۰۰ هزار دلار در ماه می‌رسید؛ به‌همین‌خاطر، فقط دانشگاه‌های معتبر و شرکت‌های بزرگ فناوری می‌توانستند به این حوزه وارد شوند. اگر آن‌روزها کسی می‌خواست برای پژوهش‌های هوش مصنوعی، فاند دریافت کند، لازم بود که ابتدا ممکن بودن ایده‌ی خود را اثبات می‌کرد و بعد،‌ از حمایت و تأیید افراد بانفوذ بهره‌مند می‌شد.

کنفرانس تاریخی DSRPAI که همه‌چیز با آن شروع شد

پنج سال بعد، سه پژوهشگر علوم کامپیوتر به‌نام‌های الن نیوول، کلیف شا و هربرت سایمون نرم‌افزار Logic Theorist را توسعه دادند که توانست ممکن بودن ایده‌ی هوش ماشینی تورینگ را اثبات کند. این برنامه که با بودجه‌ی شرکت تحقیق و توسعه‌ی RAND توسعه ‌داده شده بود، به‌گونه‌ای طراحی شده بود تا مهارت‌های حل مسئله‌ی انسان را تقلید کند.

اصطلاح «هوش مصنوعی» توسط جان مک‌کارتی در سال ۱۹۵۶ ابداع شد

بسیاری، Logic Theorist را اولین برنامه‌ی هوش مصنوعی می‌دانند. این برنامه در پروژه‌ی تحقیقاتی تابستانی کالج دارتموث در زمینه‌ی هوش مصنوعی (DSRPAI) به میزبانی جان مک‌کارتی (John McCarthy) و ماروین مینسکی (Marvin Minsky) در سال ۱۹۵۶ ارائه شد.

در این کنفرانس تاریخی، مک‌کارتی پژوهشگران برتر در حوزه‌‌های مختلف را برای بحث آزاد در مورد هوش مصنوعی(اصطلاحی که خود مک‌کارتی در همان رویداد ابداع کرد)، دور هم جمع کرد، با این تصور که با همکاری جمعی دستیابی به هوش مصنوعی ممکن می‌شد. اما کنفرانس نتوانست انتظارات مک‌کارتی را برآورده کند، چراکه هیچ هماهنگی بین پژوهشگران نبود؛ آن‌ها به دلخواه خود می‌آمدند و می‌رفتند و در مورد روش‌های استاندارد برای انجام پژوهش‌های هوش مصنوعی به هیچ توافقی نرسیدند. بااین‌حال، تمام شرکت‌کنندگان از صمیم قلب این حس را داشتند که هوش مصنوعی قابل دستیابی است.

اهمیت کنفرانس DSRPAI غیرقابل‌وصف است؛ چراکه ۲۰ سال پژوهش حوزه‌ی هوش مصنوعی برمبنای آن صورت گرفت.

ترن هوایی موفقیت‌ها و شکست‌های هوش مصنوعی

از سال‌های ۱۹۵۷ تا ۱۹۷۴، به‌عنوان دوران شکوفایی هوش مصنوعی یاد می‌شود. در این دوره، کامپیوترها سریع‌تر، ارزان‌تر و فراگیرتر شدند و می‌توانستند اطلاعات بیشتری را ذخیره کنند. الگوریتم‌های یادگیری ماشین نیز بهبود یافتند و افراد، بهتر می‌دانستند کدام الگوریتم را برای حل کدام مشکل به کار برند.

نمونه‌ برنامه‌های کامپیوتری اولیه مانند General Problem Solver نیوول و سایمون یا نرم‌افزار ELIZA که سال ۱۹۶۶ توسط جوزف وایزن‌بام طراحی شده و اولین چت‌باتی بود که توانست آزمون تورینگ را با موفقیت پشت سر بگذارد، به‌ترتیب، دانشمندان را چند قدم به اهداف «حل مسئله» و «تفسیر زبان گفتاری» نزدیک‌تر کرد.

این موفقیت‌ها همراه‌با حمایت پژوهشگران برجسته‌ای که در کنفرانس DSRPAI شرکت کرده بودند، سرانجام سازمان‌های دولتی مانند آژانس پروژه‌های تحقیقاتی پیشرفته دفاعی آمریکا (دارپا) را متقاعد کرد تا بودجه‌ی لازم برای پژوهش‌های هوش مصنوعی را در چندین موسسه تأمین کنند. دولت آمریکا به‌ویژه به توسعه‌ی ماشینی علاقه‌مند بود که بتواند هم زبان گفتاری و هم پردازش داده‌ها را با توان عملیاتی بالا رونویسی و ترجمه کند.

در این زمان، پژوهشگران به آینده‌ی این حوزه بسیار خوش‌بین بودند و سطح توقعاتشان حتی از میزان خوش‌بینی‌شان هم بالاتر بود؛ به‌طوری که در سال ۱۹۷۰، ماروین مینسکی به مجله لایف گفت: «سه تا هشت سال آینده، ما به ماشینی با هوش عمومی یک انسان عادی دست خواهیم یافت.» با این حال، اگرچه امکان رسیدن به هوش مصنوعی برای همه اثبات شده بود، هنوز راه بسیار درازی تا دستیابی به اهداف نهایی پردازش زبان طبیعی، تفکر انتزاعی و خویشتن‌آگاهی در ماشین‌ها باقی مانده بود.

موانع زیادی سر راه تحقق این اهداف قرار داشت که بزرگ‌ترینشان، نبود قدرت رایانشی کافی برای انجام پروژه‌ها بود. کامپیوترهای آن زمان نه جای کافی برای ذخیره‌ی حجم عظیمی از اطلاعات داشتند و نه سرعت لازم برای پردازش آن‌ها. هانس موراوک، دانشجوی دکترای مک‌کارتی در آن زمان، گفت که «کامپیوترها آن موقع میلیون‌ها بار ضعیف‌تر از آن بودند که بتوانند هوشی از خود نشان دهند». وقتی کاسه‌ی صبر پژوهشگران لبریز شد، بودجه‌‌های دولتی نیز کاهش یافت و تا ده سال، سرعت پژوهش‌های هوش مصنوعی به‌شدت کند شد.

تا اینکه در دهه‌ی ۱۹۸۰، دو عامل جان دوباره‌ای به پژوهش‌های هوش مصنوعی بخشیدند؛ بهبود چشمگیر در الگوریتم‌ها و از راه رسیدن بودجه‌های جدید.

بهبود چشمگیر در الگوریتم‌ها جان دوباره‌ای به پژوهش‌های هوش مصنوعی بخشید

جان هاپفیلد (John Hopfield) و دیوید روملهارت (David Rumelhart) تکنیک‌های «یادگیری عمیق» (Deep Learning) را گسترش دادند که به کامپیوترها اجازه می‌داد خودشان با تجربه کردن، چیزهای جدید یاد بگیرند. از آن طرف هم، دانشمند آمریکایی علوم کامپیوتر، ادوارد فاین‌باوم (Edward Feigenbaum)، «سیستم‌های خبره» (Expert Systems) را معرفی کرد که فرایند تصمیم‌گیری افراد متخصص را تقلید می‌کردند. این سیستم از افراد خبره‌ در زمینه‌های مختلف می‌پرسید که در موقعیتی خاص، چه واکنشی نشان می‌دهند و بعد پاسخ‌های آن‌ها را در اختیار افراد غیرمتخصص قرار می‌داد تا آن‌ها از برنامه یاد بگیرند.

از سیستم‌های خبره به‌طور گسترده در صنایع استفاده شد. دولت ژاپن به‌عنوان بخشی از پروژه‌ی نسل پنجم کامپیوتر (FGCP)، سرمایه‌گذاری کلانی در سیستم‌های خبره و دیگر پروژه‌های هوش مصنوعی انجام داد. از سال ۱۹۸۲ تا ۱۹۹۰، ژاپن ۴۰۰ میلیون دلار برای ایجاد تحول در پردازش‌های کامپیوتری، اجرای برنامه‌نویسی منطقی و بهبود هوش مصنوعی هزینه کرد.

متاسفانه، اکثر این اهداف بلندپروازانه محقق نشد؛ اما می‌توان این طور به قضیه نگاه کرد که پروژه‌ی FGCP ژاپن به‌طور غیرمستقیم الهام‌بخش نسلی از مهندسان و دانشمندان جوان شد تا به دنیای هوش مصنوعی قدم بگذارند. درنهایت، بودجه‌ی FGCP هم روزی به سر رسید و هوش مصنوعی بار دیگر از کانون توجه خارج شد.

انواع هوش مصنوعی

هوش مصنوعی به روش‌های مختلفی دسته‌بندی می‌شود؛ جدا از دسته‌بندی بسیار کلی هوش مصنوعی ضعیف و هوش مصنوعی قوی که در ابتدای مقاله درباره‌اش صحبت کردیم، روش رایج دیگری هوش مصنوعی را به چهار دسته تقسیم می‌کند:

۱) ماشین‌های واکنشی (Reactive Machines) که ساده‌ترین نوع هوش مصنوعی هستند و تنها می‌توانند به موقعیت‌های فعلی بدون استفاده از تجربیات گذشته پاسخ دهند؛ مثل موتورجستجوی گوگل.

۲) ماشین‌های حافظه محدود (Limited Memory) که می‌توانند از برخی داده‌های گذشته برای بهبود تصمیم‌گیری استفاده کنند؛ مثل سیستم احراز هویت در وب‌سایت‌ها.

۳) نظریه ذهن (Theory of Mind) که درحال‌حاضر نوع فرضی هوش مصنوعی است که می‌تواند به شکل بهتری احساسات، عواطف و اعتقادات انسان‌ها را درک و سپس از این اطلاعات برای تصمیم‌گیری خود استفاده کند.

۴) هوش مصنوعی خودآگاه (Self-aware) که آن هم یکی دیگر از انواع فرضی هوش مصنوعی است که به خودآگاهی رسیده و می‌تواند از خودش احساسات و افکار شبیه انسان‌ها داشته باشد.

اما کاربردی‌ترین دسته‌بندی هوش مصنوعی که کاری به فرضیه‌ها و نظریات ندارد و صرفا آنچه تاکنون به دست آمده را تشریح می‌کند، «یادگیری ماشین» (Machine learning) و «یادگیری عمیق» (Deep learning) است که نوعی از آن‌ها تقریبا در تمام سیستم‌های هوش مصنوعی امروزی به کار رفته است.

اگر مدت‌ها برایتان سوال بوده که این دو اصطلاح دقیقا به چه معنی هستند، اما هنوز جواب این سوال را به‌طور دقیق نمی‌دانید، نگران نباشید؛ ما اینجا تلاش خواهیم کرد به ساده‌ترین شکل ممکن، این دو مبحث بسیار پیچیده را توضیح دهیم.

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *